Homework 9:

Problem 1:

From $v=\sqrt{\frac{T}{\mu}}$, we must increase the tension by a factor of 4 .
Problem 2:
From $y=(12.0 \mathrm{~cm}) \sin ((1.57 \mathrm{rad} / \mathrm{m}) x-(31.4 \mathrm{rad} / \mathrm{s}) t)$
(a) The transverse velocity is $\frac{\partial y}{\partial t}=-A \omega \cos (k x-\omega t)$

Its maximum magnitude is $\quad A \omega=12 \mathrm{~cm}(31.4 \mathrm{rad} / \mathrm{s})=3.77 \mathrm{~m} / \mathrm{s}$
(b) $\quad a_{y}=\frac{\partial v_{y}}{\partial t}=\frac{\partial}{\partial t}(-A \omega \cos (k x-\omega t))=-A \omega^{2} \sin (k x-\omega t)$

The maximum value is $\quad A \omega^{2}=(0.12 \mathrm{~m})\left(31.4 \mathrm{~s}^{-1}\right)^{2}=118 \mathrm{~m} / \mathrm{s}^{2}$

Problem 3:
(a) $f=\frac{v}{\lambda}=\frac{(1.00 \mathrm{~m} / \mathrm{s})}{2.00 \mathrm{~m}}=0.500 \mathrm{~Hz}$
$\omega=2 \pi f=2 \pi(0.500 / \mathrm{s})=3.14 \mathrm{rad} / \mathrm{s}$
(b) $k=\frac{2 \pi}{\lambda}=\frac{2 \pi}{2.00 \mathrm{~m}}=3.14 \mathrm{rad} / \mathrm{m}$
(c) $y=A \sin (k x-\omega t+\phi)$ becomes
$y=(0.100 \mathrm{~m}) \sin (3.14 x / \mathrm{m}-3.14 t / \mathrm{s}+0)$
(d) For $x=0$ the wave function requires
$y=(0.100 \mathrm{~m}) \sin (-3.14 t / \mathrm{s})$
(e) $y=(0.100 \mathrm{~m}) \sin (4.71 \mathrm{rad}-3.14 \mathrm{t} / \mathrm{s})$
(f) $\quad v_{y}=\frac{\partial y}{\partial t}=0.100 \mathrm{~m}(-3.14 / \mathrm{s}) \cos (3.14 x / \mathrm{m}-3.14 t / \mathrm{s})$

The cosine varies between +1 and -1 , so

$$
v_{y} \leq(0.314 \mathrm{~m} / \mathrm{s})
$$

Problem 4:
Comparing $y=0.35 \sin \left(10 \pi t-3 \pi x+\frac{\pi}{4}\right)$ with $y=A \sin (k x-\omega t+\phi)=A \sin (\omega t-k x-\phi+\pi)$ we have $k=\frac{3 \pi}{m}, \omega=10 \pi / \mathrm{s}, A=0.35 \mathrm{~m}$. Then $v=f \lambda=2 \pi f \frac{\lambda}{2 \pi}=\frac{\omega}{k}=\frac{10 \pi / \mathrm{s}}{3 \pi / \mathrm{m}}=3.33 \mathrm{~m} / \mathrm{s}$.
(a) The rate of energy transport is

$$
\mathrm{P}=\frac{1}{2} \mu \omega^{2} A^{2} v=\frac{1}{2}\left(75 \times 10^{-3} \mathrm{~kg} / \mathrm{m}\right)(10 \pi / \mathrm{s})^{2}(0.35 \mathrm{~m})^{2} 3.33 \mathrm{~m} / \mathrm{s}=15.1 \mathrm{~W} .
$$

(b) The energy per cycle is

$$
E_{\lambda}=\mathrm{P} T=\frac{1}{2} \mu \omega^{2} A^{2} \lambda=\frac{1}{2}\left(75 \times 10^{-3} \mathrm{~kg} / \mathrm{m}\right)(10 \pi / \mathrm{s})^{2}(0.35 \mathrm{~m})^{2} \frac{2 \pi \mathrm{~m}}{3 \pi}=3.02 \mathrm{~J} .
$$

Problem 5:

$v=\sqrt{\frac{T}{\mu}}$ where $T=\mu \times g$, the weight of a length x, of rope. Therefore, $\quad v=\sqrt{g x}$
But $v=\frac{d x}{d t}$, so that $\quad d t=\frac{d x}{\sqrt{g x}}$
and

$$
t=\int_{0}^{L} \frac{d x}{\sqrt{g x}}=\left.\frac{1}{\sqrt{g}} \frac{\sqrt{x}}{\frac{1}{2}}\right|_{0} ^{L}=2 \sqrt{\frac{L}{g}}
$$

Problem 6:
(a)

$$
\Delta x=\sqrt{9.00+4.00}-3.00=\sqrt{13}-3.00=0.606 \mathrm{~m}
$$

The wavelength is

$$
\begin{aligned}
& \lambda=\frac{v}{f}=\frac{343 \mathrm{~m} / \mathrm{s}}{300 \mathrm{~Hz}}=1.14 \mathrm{~m} \\
& \frac{\Delta x}{\lambda}=\frac{0.606}{1.14}=0.530 \text { of a wave, } \\
& \Delta \phi=2 \pi(0.530)=3.33 \mathrm{rad}
\end{aligned}
$$

(b) For destructive interference, we want $\frac{\Delta x}{\lambda}=0.500=f \frac{\Delta x}{v}$
where Δx is a constant in this set up. $f=\frac{v}{2 \Delta x}=\frac{343}{2(0.606)}=283 \mathrm{~Hz}$
Problem 7:
$y=(1.50 \mathrm{~m}) \sin (0.400 x) \cos (200 t)=2 A_{0} \sin k x \cos \omega t$

Therefore, $k=\frac{2 \pi}{\lambda}=0.400 \mathrm{rad} / \mathrm{m}$

$$
\lambda=\frac{2 \pi}{0.400 \mathrm{rad} / \mathrm{m}}=15.7 \mathrm{~m}
$$

and $\omega=2 \pi f$ so
$f=\frac{\omega}{2 \pi}=\frac{200 \mathrm{rad} / \mathrm{s}}{2 \pi \mathrm{rad}}=31.8 \mathrm{~Hz}$
The speed of waves in the medium is $v=\lambda f=\frac{\lambda}{2 \pi} 2 \pi f=\frac{\omega}{k}=\frac{200 \mathrm{rad} / \mathrm{s}}{0.400 \mathrm{rad} / \mathrm{m}}=500 \mathrm{~m} / \mathrm{s}$

Problem 8:

(a) Let n be the number of nodes in the standing wave resulting from the $25.0-\mathrm{kg}$ mass. Then $n+1$ is the number of nodes for the standing wave resulting from the $16.0-\mathrm{kg}$ mass. For standing waves, $\lambda=\frac{2 L}{n}$, and the frequency is $f=\frac{v}{\lambda}$.

Thus,

$$
f=\frac{n}{2 L} \sqrt{\frac{T_{n}}{\mu}}
$$

and also

$$
f=\frac{n+1}{2 L} \sqrt{\frac{T_{n+1}}{\mu}}
$$

Thus,

$$
\frac{n+1}{n}=\sqrt{\frac{T_{n}}{T_{n+1}}}=\sqrt{\frac{(25.0 \mathrm{~kg})_{g}}{(16.0 \mathrm{~kg}) g}}=\frac{5}{4}
$$

Therefore,

$$
4 n+4=5 n, \text { or } n=4
$$

Then,

$$
f=\frac{4}{2(2.00 \mathrm{~m})} \sqrt{\frac{(25.0 \mathrm{~kg})\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}{0.00200 \mathrm{~kg} / \mathrm{m}}}=350 \mathrm{~Hz}
$$

(b) The largest mass will correspond to a standing wave of 1 loop

$$
\begin{array}{ll}
(n=1) \text { so } & 350 \mathrm{~Hz}=\frac{1}{2(2.00 \mathrm{~m})} \sqrt{\frac{m\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)}{0.00200 \mathrm{~kg} / \mathrm{m}}} \\
\text { yielding } & m=400 \mathrm{~kg}
\end{array}
$$

Problem 9:
(a) The string could be tuned to either 521 Hz or 525 Hz from this evidence.
(b) Tightening the string raises the wave speed and frequency. If the frequency were originally 521 Hz , the beats would slow down.
Instead, the frequency must have started at 525 Hz to become 526 Hz .
(c) From $f=\frac{v}{\lambda}=\frac{\sqrt{T / \mu}}{2 L}=\frac{1}{2 L} \sqrt{\frac{T}{\mu}}$

$$
\frac{f_{2}}{f_{1}}=\sqrt{\frac{T_{2}}{T_{1}}} \text { and } T_{2}=\left(\frac{f_{2}}{f_{1}}\right)^{2} T_{1}=\left(\frac{523 \mathrm{~Hz}}{526 \mathrm{~Hz}}\right)^{2} T_{1}=0.989 T_{1} .
$$

The fractional change that should be made in the tension is then

$$
\text { fractional change }=\frac{T_{1}-T_{2}}{T_{1}}=1-0.989=0.0114=1.14 \% \text { lower }
$$

The tension should be reduced by 1.14%.

