P31.10
$\Phi_{B}=\left(u_{0} n I\right) A_{\text {solenoid }}$
$\varepsilon=-N \frac{d \Phi_{B}}{d t}=-N \mu_{0} n\left(\pi r_{\text {solenoid }}^{2}\right) \frac{d I}{d t}$
$\varepsilon=-15.0\left(4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}\right)\left(1.00 \times 10^{3} \mathrm{~m}^{-1}\right) \pi(0.0200 \mathrm{~m})^{2}(600 \mathrm{~A} / \mathrm{s}) \cos (120 t)$
$\varepsilon=-142 \cos (120 t) \mathrm{mV}$

P31.12 $\quad|\varepsilon|=\left|\frac{\Delta \Phi_{B}}{\Delta t}\right|=N\left(\frac{d B}{d t}\right) A=N(0.0100+0.0800 t) A$
At $t=5.00 \mathrm{~s},|\varepsilon|=30.0(0.410 \mathrm{~T} / \mathrm{s})\left[\pi(0.0400 \mathrm{~m})^{2}\right]=61.8 \mathrm{mV}$

P31.22 $F_{B}=I \ell B$ and $\varepsilon=B \ell v$
$I=\frac{\varepsilon}{R}=\frac{B \ell v}{R}$ so $B=\frac{I R}{\ell v}$
(a) $\quad F_{B}=\frac{I^{2} \ell R}{\ell v}$ and $I=\sqrt{\frac{F_{B} v}{R}}=0.500 \mathrm{~A}$
(b) $\quad I^{2} R=2.00 \mathrm{~W}$
(c) For constant force, $\mathrm{P}=\mathbf{F} \cdot \mathbf{v}=(1.00 \mathrm{~N})(2.00 \mathrm{~m} / \mathrm{s})=2.00 \mathrm{~W}$.

P31.28 (a) $\quad \mathbf{B}_{\text {ext }}=B_{e x t} \hat{\mathbf{i}}$ and $B_{e x t}$ decreases; therefore, the induced field is $\mathbf{B}_{0}=B_{0} \hat{\mathbf{i}}$ (to the right) and the current in the resistor is directed to the right.
(b) $\quad \mathbf{B}_{e x t}=B_{e x t}(-\hat{\mathbf{i}})$ increases; therefore, the induced field $\mathbf{B}_{0}=B_{0}(+\hat{\mathbf{i}})$ is to the right, and the current in the resistor is directed to the right.
(c) $\quad \mathbf{B}_{e x t}=B_{e x t}(-\hat{\mathbf{k}})$ into the paper and $B_{e x t}$ decreases; therefore, the induced field is $\mathbf{B}_{0}=B_{0}(-\hat{\mathbf{k}})$ into the paper, and the current in the resistor is directed to the right.

FIG. P31.28
(d) By the magnetic force law, $F_{B}=q(\mathbf{v} \times \mathbf{B})$. Therefore, a positive charge will move to the top of the bar if \mathbf{B} is into the paper.

P31.59 (a) At time t, the flux through the loop is

$$
\Phi_{B}=B A \cos \theta=(a+b t)\left(\pi r^{2}\right) \cos 0^{\circ}=\pi(a+b t) r^{2} .
$$

$$
\text { At } t=0, \Phi_{B}=\pi a r^{2} .
$$

(b) $\quad \varepsilon=-\frac{d \Phi_{B}}{d t}=-\pi r^{2} \frac{d(a+b t)}{d t}=-\pi b r^{2}$
(c) $I=\frac{\varepsilon}{R}=-\frac{\pi b r^{2}}{R}$
(d) $\quad \mathrm{P}=\varepsilon I=\left(-\frac{\pi b r^{2}}{R}\right)\left(-\pi b r^{2}\right)=\frac{\pi^{2} b^{2} r^{4}}{R}$

P32.8 $|\varepsilon|=L \frac{d I}{d t}=\left(90.0 \times 10^{-3}\right) \frac{d}{d t}\left(t^{2}-6 t\right) \mathrm{V}$
(a) At $t=1.00 \mathrm{~s}, \quad \varepsilon=360 \mathrm{mV}$
(b) At $t=4.00 \mathrm{~s}, \quad \varepsilon=180 \mathrm{mV}$
(c) $\varepsilon=\left(90.0 \times 10^{-3}\right)(2 t-6)=0$
when $\quad t=3.00 \mathrm{~s}$.

P32.18

$$
I=\frac{\varepsilon}{R}\left(1-e^{-/ \tau}\right)=\frac{120}{9.00}\left(1-e^{-1.807 .00}\right)=3.02 \mathrm{~A}
$$

$$
\Delta V_{R}=I R=(3.02)(9.00)=27.2 \mathrm{~V}
$$

$$
\Delta V_{L}=\varepsilon-\Delta V_{R}=120-27.2=92.8 \mathrm{~V}
$$

P32.46 At different times, $\left(U_{C}\right)_{\max }=\left(U_{L}\right)_{\max }$ so $\left[\frac{1}{2} C(\Delta V)^{2}\right]_{\max }=\left(\frac{1}{2} L I^{2}\right)_{\max }$

$$
I_{\text {max }}=\sqrt{\frac{C}{L}}(\Delta V)_{\max }=\sqrt{\frac{1.00 \times 10^{-6} \mathrm{~F}}{10.0 \times 10^{-3} \mathrm{H}}}(40.0 \mathrm{~V})=0.400 \mathrm{~A} \text {. }
$$

P32.32
(a) $\quad U=\frac{1}{2} L I^{2}=\frac{1}{2} L\left(\frac{\varepsilon}{2 R}\right)^{2}=\frac{L \varepsilon^{2}}{8 R^{2}}=\frac{(0.800)(500)^{2}}{8(30.0)^{2}}=27.8 \mathrm{~J}$
(b) $\quad I=\left(\frac{\varepsilon}{R}\right)\left[1-e^{-(R / L L) t}\right] \quad$ so $\quad \frac{\varepsilon}{2 R}=\left(\frac{\varepsilon}{R}\right)\left[1-e^{-(R / L) t}\right] \rightarrow e^{-(R / L) t}=\frac{1}{2}$
$\frac{R}{L} t=\ln 2 \quad$ so $\quad t=\frac{L}{R} \ln 2=\frac{0.800}{30.0} \ln 2=18.5 \mathrm{~ms}$

P32.51
(a) $f=\frac{1}{2 \pi \sqrt{L C}}=\frac{1}{2 \pi \sqrt{(0.0820 \mathrm{H})\left(17.0 \times 10^{-6} \mathrm{~F}\right)}}=135 \mathrm{~Hz}$
(b) $\quad Q=Q_{\text {max }} \cos \omega t=(180 \mu \mathrm{C}) \cos (847 \times 0.00100)=119 \mu \mathrm{C}$
(c) $I=\frac{d Q}{d t}=-\omega Q_{\max } \sin \omega t=-(847)(180) \sin (0.847)=-114 \mathrm{~mA}$

