
Homework # 6 Solutions

1. The magnetic field at the center of the loop is the superposition of the magnetic field due to
the long wire and the magnetic field at the center of the loop:
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)
.

2. At point P , the contributions to the magnetic field arise from the two π/3 arcs with radii a
and b (the magnetic field at P due to the sides of the loop is zero, since there d~l is parallel to the
point ~r, such that Id~l×~r = 0). Since the currents are oppositely directed, the magnetic field is the
difference between the two:
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Of the two arcs, the counterclockwise current (in the arc of radius a) gives the larger contribution
to the magnetic field, and thus the direction of the field is given by the right-hand rule to be out
of the plane of the page.

3. (a) Denote the separation of the wires by d. The magnitude of the magnetic field created by
wire 1 at the location of wire 2 is

B1 =
µ0I1

2πd
,

and the direction is out of the plane of the page.
(b) The force per unit length exerted on I2 by I1 is

F

l
= I2B1 =

µ0I1I2

2πd
,

directed downward (in the negative y direction).
(c) The magnitude of the magnetic field created by wire 2 at the location of wire 1 is

B2 =
µ0I2

2πd
,

and the direction is into of the plane of the page.
(d) The force per unit length exerted on I1 by I2 is

F

l
= I1B2 =

µ0I1I2

2πd
,

directed upward (in the positive y direction).

4. By Ampere’s Law, the magnetic field at point a (radius a) is given by∮
~B · d~s = B2πa = µ0Ienclosed = µ0I1,
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such that
B =

mu0I1

2πa
.

The field circulates in a counterclockwise direction around I1; at point a it is directed upward.

At point b, the current enclosed is I1 − I2, so by the same logic∮
~B · d~s = B2πb = µ0Ienclosed = µ0(I1 − I2),

and hence
B =

mu0(I1 − I2)
2πb

.

If I2 > I1, the B field will be clockwise in direction, and therefore will point downward at point b.

5. The magnetic field of the solenoid is B = µ0nIs, where n is the number of turns per
unit length and Is is the current in the solenoid. The loop is perpendicular to the field direction.
Looking at the loop through one end of the solenoid (with current Is circulating in the clockwise
direction), the magnetic field of the solenoid is directed into the plane defined by the loop. Since
the field of the solenoid is uniform, the force on each side of the loop is given by

F = IllB = µ0nIlIsl,

in which Il is the current in the loop and l denotes each edge of the square loop. Since the loop
current is also flowing in the clockwise direction, the direction of the magnetic force is outward,
directed away from the center in the plane of the loop.

The net torque on the loop is zero. This can be seen by inspection of the directions of the
forces (which are equal in magnitude) on each side of the square. Alternatively, recall that a current
loop in a magnetic field will feel a torque such that its magnetic dipole moment aligns with the
magnetic field. Here the magnetic moment vector of the loop and the magnetic field of the solenoid
are in the same direction, so there is zero net torque.

6. (a) The magnetic flux through surface S1 is

~B · ~A = −BA cos θ = −BπR2 cos θ.

(The minus sign is due to the fact that the area vector is defined to be the outward pointing normal
to S1, which is in the opposite direction of the parallel component of the magnetic field. Since this
is slightly ambiguous, please keep in mind that the answer without the minus sign would net full
credit were this an exam question.)

(b) By Gauss’s law for magnetism, which states that the net flux through any closed surface
is zero, the flux through S2 must be

BπR2 cos θ,

i.e., equal and opposite to the flux through S1.
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7. (a) The electric field in between the capacitor plates is

E =
σ

ε0
=

q

πR2ε0
,

where R is the radius of the capacitor plates. Since q is changing as a function of time, with

I =
dq

dt
,

the time rate of change of the electric field is

dE

dt
=

dq

dt

1
πR2ε0

=
I

πR2ε0
.

(b) The source for the magnetic field between the capacitor plates is the displacement current,

Id = ε0
dΦe

dt
= ε0πR2 dE

dt
= I

(from part (a) above). To obtain the magnetic field at radius r, use Ampere-Maxwell’s Law:∮
~B · d~s = B2πr = µ0(I + Id)enclosed = (Id)enclosed = Id

r2

R2
= I

r2

R2

such that
B =

µ0Ir

2πR2
.

Here we used the fact that the displacement current is effectively uniformly distributed between
the plates of the capacitor, such that the enclosed displacement current is equal to the total current
times the ratio of areas πr2/(πR2). (Therefore, the full amount of the displacement current is only
enclosed for a path the size of the radius of the capacitor plate or larger. Note that for such large
paths one has to also be concerned with edge effects of the capacitor’s E field. However, we will
not concern ourselves with such issues in Physics 202.)

8. Since the thickness of the toroid is negligible compared to its mean radius rm, the magnetic
field of the iron-core toroid is given by

B ≈ µNI

2πrm
.

(Note that for magnetic materials, effectively one replaces µ0 with the magnetic permeability µ in
the formula for the magnetic field. The current is then

I =
B2πrm

µN
.

9. By Faraday’s Law,

|E| = IR =
dΦB

dt
=

(
A

∆B

∆t

)
,

where A is the cross-sectional area, I is the induced current, and R is the resistance of the loop.
The induced current is thus

I =
|E|
R

=
A

R

∆B

∆t
.
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