Homework \# 5 Solutions

1. (a) The magnetic force on the proton is

$$
F=q v B \sin \theta
$$

(b) Its acceleration is

$$
a=\frac{F}{m_{p}}=\frac{q v B \sin \theta}{m_{p}} .
$$

2. (a) The electron accelerates through a potential difference ΔV, giving it kinetic energy

$$
\left|q_{e}\right| \Delta V=\frac{1}{2} m_{e} v^{2}
$$

such that its speed v is

$$
v=\sqrt{\frac{2\left|q_{e}\right| \Delta V}{m_{e}}}
$$

The maximum value of the force is when the velocity is perpendicular to the B field, in which case

$$
|F|=\left|q_{e} v B\right| .
$$

(b) The minimum value of the force occurs when the velocity is parallel to the B field, in which case $F=0$.
3. Given the velocity $\vec{v}=v_{x} \hat{i}+v_{y} \hat{j}+v_{z} \hat{k}$ and the magnetic field $\vec{B}=B_{x} \hat{i}+B_{y} \hat{j}+B_{z} \hat{k}$, the magnetic force on the proton is

$$
\vec{F}=q_{p} \vec{v} \times \vec{B}=\left(v_{y} B_{z}-v_{z} B_{y}\right) \hat{i}+\left(v_{z} B_{x}-v_{x} B_{z}\right) \hat{j}+\left(v_{x} B_{y}-v_{y} B_{x}\right) \hat{k} .
$$

The magnitude of the force is $|\vec{F}|=\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}}$.
4. We are given that the velocity of the electron is $\vec{v}=v_{e} \hat{i}$, its acceleration is $\vec{a}=a_{e} \hat{k}$, and the electric field is $\vec{E}=E \hat{k}$. The components of the magnetic field can be determined using the Lorentz force law:

$$
\vec{F}=m_{e} \vec{a}=q_{e} \vec{E}+q_{e} \vec{v} \times \vec{B},
$$

which in this case takes the form

$$
m_{e} a_{e} \hat{k}=q_{e} E \hat{k}+q_{e} v_{e} \hat{i} \times \vec{B} .
$$

Since there is no acceleration in the y direction, we can conclude that $B_{z}=0$. Furthermore, B_{x} is undetermined since it has a vanishing contribution to the magnetic force (since B_{x} is parallel to the
velocity). The y component of the magnetic field will provide a magnetic force in the z direction. The Lorentz force law becomes

$$
m_{e} a_{e}=q_{e} E+q_{e} v_{e} B_{y}
$$

such that the y component of the magnetic field is

$$
B_{y}=\frac{1}{v_{e}}\left(-\frac{m_{e} a_{e}}{\left|q_{e}\right|}-E\right)
$$

5. The rod experiences a magnetic force $F=I B d$ directed toward the right. The work done as it rolls a distance L is equal to the change in its kinetic energy. Since the rod is rolling without slipping, the kinetic energy equals the translational kinetic energy $\frac{1}{2} m v^{2}$ plus the rotational kinetic energy $\frac{1}{2} I_{\text {rod }} \omega^{2}$, where $\omega=v / R$ is the angular velocity, and the moment of inertia $I_{\text {rod }}=\frac{1}{2} m R^{2}$. Therefore, the work-energy relation takes the form

$$
I B d L=\frac{1}{2} m v^{2}+\frac{1}{2} I_{\mathrm{rod}} \omega^{2}=\frac{1}{2} m v^{2}+\frac{1}{2}\left(\frac{1}{2} m R^{2}\right)\left(\frac{v}{R}\right)^{2}=\frac{3}{4} m v^{2},
$$

such that

$$
v=\sqrt{\frac{4 I B d L}{3 m}}
$$

6. (a) The magnetic moment of the current loop of circumference $2 \pi r$ is

$$
\mu=I A=I \pi r^{2} .
$$

(b) The torque exerted by the magnetic field on the loop is

$$
|\vec{\tau}|=|\vec{\mu} \times \vec{B}|=|\mu B| .
$$

7. For the singly charged ion, the velocity is obtained from

$$
q \Delta V=\frac{1}{2} m v^{2}
$$

such that

$$
v=\sqrt{\frac{2 q \Delta V}{m}}
$$

The radius of its semicircular orbit is

$$
R=\frac{m v}{q B}=\frac{1}{B} \sqrt{\frac{2 \Delta V m}{q}}
$$

If the radius of the orbit of a multiply charged ion with $q^{\prime}=n q$ and mass m^{\prime} is $R^{\prime}=N R$, we have the relation

$$
\frac{R^{\prime}}{R}=N=\sqrt{\frac{m^{\prime}}{m} \frac{q}{q^{\prime}}}=\sqrt{\frac{1}{n} \frac{m^{\prime}}{m}},
$$

such that

$$
\frac{m^{\prime}}{m}=N^{2} n .
$$

8. The velocity selected in the velocity selector is

$$
v=\frac{E}{B} .
$$

The radius of the circular orbit of a singly charged ion (i.e., $q=q_{p}=1.6 \times 10^{-19} \mathrm{C}$) in the mass spectrometer is

$$
r=\frac{m v}{q B}=\frac{m E}{q B^{2}} .
$$

9. (a) The Hall voltage is related to the magnetic field as follows:

$$
\begin{equation*}
\Delta V_{H}=\frac{I B}{n q t} . \tag{1}
\end{equation*}
$$

For the Hall probe with current I, the initial data for the Hall voltage and the magnetic field allows us to solve for $(n q t)^{-1}$:

$$
\frac{1}{n q t}=\frac{\Delta V_{H}}{I B} .
$$

We can then use Eq. (1) to solve for the new magnetic field B^{\prime} given a new Hall voltage ΔV_{H}^{\prime} :

$$
B^{\prime}=n q t \frac{\Delta V_{H}^{\prime}}{I}=B \frac{\Delta V_{H}^{\prime}}{\Delta V_{H}} .
$$

(b) To determine n, use Eq. (1):

$$
n=\frac{1}{q t} \frac{I B}{\Delta V_{H}} .
$$

10. The magnetic field a distance r away from a long current-carrying wire is

$$
B=\frac{\mu_{0} I}{2 \pi r} .
$$

