
Homework # 2 Solutions

1. Gauss’s law dictates that the net flux through any closed surface is given by the charge
enclosed divided by ε0 (ε0 = 8.85 × 10−12C2/N m2). The charge enclosed by the sphere of radius
R < a is just the point charge q, so the total electric flux is q/ε0.

2. Using Gauss’s law, the electric flux ΦSi through the surfaces are:

ΦS1 = (−2Q + Q)/ε0 = −Q/ε0, ΦS3 = (−2Q + Q − Q)/ε0 = −2Q/ε0, ΦS2 = ΦS4 = 0.

3. The electric field of a uniform solid sphere of radius R with charge Q distributed throughout
its volume is

~E(r) =
keQr

R3
r̂, (r < R)

~E(r) =
keQ

r2
r̂. (r > R).

Here R = 0.4 m. The field values are as follows:

(a) E(r = 0) = 0

(b) E(r = 0.10 m) =
keQ(0.10 m)

(0.4 m)3

(c) E(r = R) =
keQ

R2
=

keQ

(0.4 m)2

(d) E(r = 0.6 m) =
keQ

(0.6 m)2
.

4. (a) Begin by defining a linear surface charge density λ = Q/L, where L is the length of the
cylinder and Q is the net charge on the shell. Since L is much larger than the field point r at which
we know the electric field, the the length of the cylinder can be approximated as infinite. Gauss’s
law can be used to obtain the electric field; the electric flux through a Gaussian surface (cylinder)
of arbitrary length l enclosing the cylindrical shell is:∫

~E · d ~A = E(r)2πrl =
qenclosed

ε0
=

λl

ε0
. (1)

This gives

E(r) =
λ

2πε0r
, (2)

and thus
Q = λL = 2πε0rE(r)L. (3)

(b) To determine the electric field at a value r < R, draw a Gaussian surface at r. There is
no charge enclosed by this surface, so the electric field is zero in this region.
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5. The electric field just outside the spherical shell (inner radius ri, outer radius r0) can be
determined by Gauss’s law:∫

~E · d ~A = E(r)4πr2 =
qenclosed

ε0
=

Qsph + q

ε0
, (4)

such that
~E(r) = ke

Qsph + q

r2
r̂. (5)

In the above,

Qsph = ρVsph = ρ
4
3
π(r3

o − r3
i ),

ρ is the volume charge density, and q is the charge at the center of the shell. Since both q and Qsph

are negative, the force on the orbiting proton provides a centripetal acceleration:

F = qpE(r) = qpke
(|Qsph| + |q|)

r2
=

mpv
2

r
. (6)

The speed of the proton’s orbit is

v =

√
qpke(|Qsph| + |q|)

mpr0
. (7)

6. The middle of a large uniformly charged sheet can be approximated as an infinite uniform
sheet of charge. Upon drawing a pillbox with cross-sectional area A, Gauss’s law gives∫

~E · d ~A = EA =
qenclosed

ε0
=

σA

ε0
, (8)

such that
E =

σ

2ε0
. (9)

It points upward (i.e., away from the charged sheet) since the surface charge density σ > 0.

7. (a) To obtain the charge per unit length on the inner surface of the cylinder, first recall that
inside a conductor, the electric field must be zero. By Gauss’s law,∫

~E · d ~A =
qenclosed

ε0
. (10)

The charge enclosed by a Gaussian cylinder of length l with a radius just inside the conductor must
then be zero: ∫

~E · d ~A = 0 =
(λl + λinnerl)

ε0
, (11)

such that λinner = −λ.
(b) Since the total charge per unit length on the cylinder is 2λ, the charge per unit length on

the outer surface of the cylinder is given by λouter = 2λ − λinner = 2λ − (−λ) = 3λ.
(c) To obtain the E field outside the cylinder, draw a Gaussian cylinder of length l at radius

r. Using Gauss’s Law, ∫
~E · d ~A = E(r)2πrl =

qenclosed

ε0
=

3λl

ε0
. (12)
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The electric field is then
E(r) =

3λ

2πε0r
. (13)

8. The potential difference needed to stop an electron with initial speed vi is

1
2
mv2 = qe∆V (14)

∆V = −(9.11 × 10−31 kg)v2

2(1.6 × 10−19 C)
. (15)

9. The electric field is given by

E =
∆V

d
. (16)

10. To evaluate the potential difference, we need to determine the electric field and the height of
the ball’s trajectory. Given the initial velocity of the ball v0 and the time for a round trip trajectory
tr, we can solve for the acceleration using the fact that at the top of the trajectory, v = 0:

v = 0 = v0 + a
tr
2

, (17)

such that
a = −2v0

tr
, (18)

(the minus sign reflects that it is directed downward). The magnitude of the acceleration is related
to the electric field as follows:

g +
|q|E
m

= |a| =
2v0

tr
, (19)

where g = 9.8m/s2. Solving this equation for E yields

E =
m

|q|

(
2v0

tr
− g

)
. (20)

The distance to the top of the trajectory can be obtained by

∆y = v0
tr
2

+
1
2
a

(
tr
2

)2

(21)

= v0
tr
2
− 1

2
2v0

tr

(
tr
2

)2

=
1
4
v0tr. (22)

The potential difference is given by

∆V = −
∫ y

y0

~E · d~s = E∆y, (23)

such that
∆V =

m

|q|

(
2v0

tr
− g

) (
1
4
v0tr

)
. (24)

3


