Homework \# 2 Solutions

1. Gauss's law dictates that the net flux through any closed surface is given by the charge enclosed divided by $\epsilon_{0}\left(\epsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}\right)$. The charge enclosed by the sphere of radius $R<a$ is just the point charge q, so the total electric flux is q / ϵ_{0}.
2. Using Gauss's law, the electric flux $\Phi_{S_{i}}$ through the surfaces are:

$$
\Phi_{S_{1}}=(-2 Q+Q) / \epsilon_{0}=-Q / \epsilon_{0}, \quad \Phi_{S_{3}}=(-2 Q+Q-Q) / \epsilon_{0}=-2 Q / \epsilon_{0}, \quad \Phi_{S_{2}}=\Phi_{S_{4}}=0
$$

3. The electric field of a uniform solid sphere of radius R with charge Q distributed throughout its volume is

$$
\begin{aligned}
\vec{E}(r) & =\frac{k_{e} Q r}{R^{3}} \hat{r}, \quad(r<R) \\
\vec{E}(r) & =\frac{k_{e} Q}{r^{2}} \hat{r} . \quad(r>R) .
\end{aligned}
$$

Here $R=0.4 \mathrm{~m}$. The field values are as follows:

$$
\begin{aligned}
& \text { (a) } E(r=0)=0 \\
& \text { (b) } E(r=0.10 \mathrm{~m})=\frac{k_{e} Q(0.10 \mathrm{~m})}{(0.4 \mathrm{~m})^{3}} \\
& \text { (c) } E(r=R)=\frac{k_{e} Q}{R^{2}}=\frac{k_{e} Q}{(0.4 \mathrm{~m})^{2}} \\
& \text { (d) } E(r=0.6 \mathrm{~m})=\frac{k_{e} Q}{(0.6 \mathrm{~m})^{2}} .
\end{aligned}
$$

4. (a) Begin by defining a linear surface charge density $\lambda=Q / L$, where L is the length of the cylinder and Q is the net charge on the shell. Since L is much larger than the field point r at which we know the electric field, the the length of the cylinder can be approximated as infinite. Gauss's law can be used to obtain the electric field; the electric flux through a Gaussian surface (cylinder) of arbitrary length l enclosing the cylindrical shell is:

$$
\begin{equation*}
\int \vec{E} \cdot d \vec{A}=E(r) 2 \pi r l=\frac{q_{\text {enclosed }}}{\epsilon_{0}}=\frac{\lambda l}{\epsilon_{0}} . \tag{1}
\end{equation*}
$$

This gives

$$
\begin{equation*}
E(r)=\frac{\lambda}{2 \pi \epsilon_{0} r}, \tag{2}
\end{equation*}
$$

and thus

$$
\begin{equation*}
Q=\lambda L=2 \pi \epsilon_{0} r E(r) L . \tag{3}
\end{equation*}
$$

(b) To determine the electric field at a value $r<R$, draw a Gaussian surface at r. There is no charge enclosed by this surface, so the electric field is zero in this region.
5. The electric field just outside the spherical shell (inner radius r_{i}, outer radius r_{0}) can be determined by Gauss's law:

$$
\begin{equation*}
\int \vec{E} \cdot d \vec{A}=E(r) 4 \pi r^{2}=\frac{q_{\text {enclosed }}}{\epsilon_{0}}=\frac{Q_{\text {sph }}+q}{\epsilon_{0}} \tag{4}
\end{equation*}
$$

such that

$$
\begin{equation*}
\vec{E}(r)=k_{e} \frac{Q_{s p h}+q}{r^{2}} \hat{r} . \tag{5}
\end{equation*}
$$

In the above,

$$
Q_{s p h}=\rho V_{s p h}=\rho \frac{4}{3} \pi\left(r_{o}^{3}-r_{i}^{3}\right)
$$

ρ is the volume charge density, and q is the charge at the center of the shell. Since both q and $Q_{s p h}$ are negative, the force on the orbiting proton provides a centripetal acceleration:

$$
\begin{equation*}
F=q_{p} E(r)=q_{p} k_{e} \frac{\left(\left|Q_{s p h}\right|+|q|\right)}{r^{2}}=\frac{m_{p} v^{2}}{r} . \tag{6}
\end{equation*}
$$

The speed of the proton's orbit is

$$
\begin{equation*}
v=\sqrt{\frac{q_{p} k_{e}\left(\left|Q_{s p h}\right|+|q|\right)}{m_{p} r_{0}}} . \tag{7}
\end{equation*}
$$

6. The middle of a large uniformly charged sheet can be approximated as an infinite uniform sheet of charge. Upon drawing a pillbox with cross-sectional area A, Gauss's law gives

$$
\begin{equation*}
\int \vec{E} \cdot d \vec{A}=E A=\frac{q_{\text {enclosed }}}{\epsilon_{0}}=\frac{\sigma A}{\epsilon_{0}}, \tag{8}
\end{equation*}
$$

such that

$$
\begin{equation*}
E=\frac{\sigma}{2 \epsilon_{0}} \tag{9}
\end{equation*}
$$

It points upward (i.e., away from the charged sheet) since the surface charge density $\sigma>0$.
7. (a) To obtain the charge per unit length on the inner surface of the cylinder, first recall that inside a conductor, the electric field must be zero. By Gauss's law,

$$
\begin{equation*}
\int \vec{E} \cdot d \vec{A}=\frac{q_{\text {enclosed }}}{\epsilon_{0}} . \tag{10}
\end{equation*}
$$

The charge enclosed by a Gaussian cylinder of length l with a radius just inside the conductor must then be zero:

$$
\begin{equation*}
\int \vec{E} \cdot d \vec{A}=0=\frac{\left(\lambda l+\lambda_{\text {inner }} l\right)}{\epsilon_{0}}, \tag{11}
\end{equation*}
$$

such that $\lambda_{\text {inner }}=-\lambda$.
(b) Since the total charge per unit length on the cylinder is 2λ, the charge per unit length on the outer surface of the cylinder is given by $\lambda_{\text {outer }}=2 \lambda-\lambda_{\text {inner }}=2 \lambda-(-\lambda)=3 \lambda$.
(c) To obtain the E field outside the cylinder, draw a Gaussian cylinder of length l at radius r. Using Gauss's Law,

$$
\begin{equation*}
\int \vec{E} \cdot d \vec{A}=E(r) 2 \pi r l=\frac{q_{\text {enclosed }}}{\epsilon_{0}}=\frac{3 \lambda l}{\epsilon_{0}} . \tag{12}
\end{equation*}
$$

The electric field is then

$$
\begin{equation*}
E(r)=\frac{3 \lambda}{2 \pi \epsilon_{0} r} . \tag{13}
\end{equation*}
$$

8. The potential difference needed to stop an electron with initial speed v_{i} is

$$
\begin{gather*}
\frac{1}{2} m v^{2}=q_{e} \Delta V \tag{14}\\
\Delta V=-\frac{\left(9.11 \times 10^{-31} \mathrm{~kg}\right) v^{2}}{2\left(1.6 \times 10^{-19} \mathrm{C}\right)} \tag{15}
\end{gather*}
$$

9. The electric field is given by

$$
\begin{equation*}
E=\frac{\Delta V}{d} . \tag{16}
\end{equation*}
$$

10. To evaluate the potential difference, we need to determine the electric field and the height of the ball's trajectory. Given the initial velocity of the ball v_{0} and the time for a round trip trajectory t_{r}, we can solve for the acceleration using the fact that at the top of the trajectory, $v=0$:

$$
\begin{equation*}
v=0=v_{0}+a \frac{t_{r}}{2}, \tag{17}
\end{equation*}
$$

such that

$$
\begin{equation*}
a=-\frac{2 v_{0}}{t_{r}}, \tag{18}
\end{equation*}
$$

(the minus sign reflects that it is directed downward). The magnitude of the acceleration is related to the electric field as follows:

$$
\begin{equation*}
g+\frac{|q| E}{m}=|a|=\frac{2 v_{0}}{t_{r}}, \tag{19}
\end{equation*}
$$

where $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$. Solving this equation for E yields

$$
\begin{equation*}
E=\frac{m}{|q|}\left(\frac{2 v_{0}}{t_{r}}-g\right) . \tag{20}
\end{equation*}
$$

The distance to the top of the trajectory can be obtained by

$$
\begin{align*}
\Delta y & =v_{0} \frac{t_{r}}{2}+\frac{1}{2} a\left(\frac{t_{r}}{2}\right)^{2} \tag{21}\\
& =v_{0} \frac{t_{r}}{2}-\frac{1}{2} \frac{2 v_{0}}{t_{r}}\left(\frac{t_{r}}{2}\right)^{2}=\frac{1}{4} v_{0} t_{r} . \tag{22}
\end{align*}
$$

The potential difference is given by

$$
\begin{equation*}
\Delta V=-\int_{y_{0}}^{y} \vec{E} \cdot d \vec{s}=E \Delta y \tag{23}
\end{equation*}
$$

such that

$$
\begin{equation*}
\Delta V=\frac{m}{|q|}\left(\frac{2 v_{0}}{t_{r}}-g\right)\left(\frac{1}{4} v_{0} t_{r}\right) . \tag{24}
\end{equation*}
$$

