Physics 202 Chapter 32 continued Oct 30, 2007

Induction: LC circuit, RLC circuit

On whiteboard

- LC circuit
 - Solve Kirchhoff's equation
 - Harmonic oscillator
 - Discussion
 - analogy to mass spring system
 - Energy
- RLC circuit
 - Solution
 - Demonstration with a weakly damped RLC circuit

Oscillations in an LC Circuit

- The energy continues to oscillate between the inductor and the capacitor
- The total energy stored in the LC circuit remains constant in time and equals

$$U = U_{\rm C} + U_{\rm L} = \frac{Q^2}{2C} + \frac{1}{2}LI^2$$

$$U = U_{c} + U_{L} = \frac{Q_{max}^{2}}{2c}\cos^{2}\omega t + \frac{1}{2}LI_{max}^{2}\sin^{2}\omega t$$

RLC Circuit – a damped harmonic oscillator

- When *R* is small:
 - The RLC circuit is analogous to light damping in a mechanical oscillator
 - $Q = Q_{\max} e^{-Rt/2L} \cos \omega_d t$
 - $\omega_{\rm d}$ is the angular frequency of oscillation for the circuit and

$$\omega_d = \left[\frac{1}{LC} - \left(\frac{R}{2L}\right)^2\right]^{\frac{1}{2}}$$

Electric Circuit		One-Dimensio Mechanical Sy
Charge	$Q \leftrightarrow x$	Position
Current	$I \iff v_x$	Velocity
Potential difference	$\Delta V \iff F_x$	Force
Resistance	$R \leftrightarrow b$	Viscous dampin coefficient
Capacitance	$C \leftrightarrow 1/k$	(k = spring con)
Inductance	$L \iff m$	Mass
Current = time derivative of charge	$I = \frac{dQ}{dt} \iff v_x =$	$= \frac{dx}{dt}$ Velocity = time derivative of position
Rate of change of current = second time derivative of charge	$\frac{dI}{dt} = \frac{d^2Q}{dt^2} \iff a_x =$	$\frac{dv_x}{dt} = \frac{d^2x}{dt^2}$ Acceleration = second time derivative of position
Energy in inductor	$U_L = \frac{1}{2} L I^2 \iff K =$	$\frac{1}{2}mv^2$ Kinetic energy of moving object
Energy in capacitor	$U_C = \frac{1}{2} \frac{Q^2}{C} \iff U =$	$\frac{1}{2}kx^2$ Potential energy stored in a sp
Rate of energy loss due to resistance	$I^2R \leftrightarrow bv^2$	Rate of energy l due to frictio
RLC circuit	$L \frac{d^2Q}{dt^2} + R \frac{dQ}{dt} + \frac{Q}{C} = 0 \iff m - \frac{d^2Q}{dt^2} + \frac{dQ}{dt} + \frac{Q}{C} = 0 \Leftrightarrow m = 0$	$\frac{d^2x}{dt^2} + b \frac{dx}{dt} + kx = 0$ Damped object a spring