Physics 202, Lecture 12

Today's Topics

- Magnetic Forces (Ch. 29)
- Review: magnetic force, magnetic dipoles
- Motion of charge in uniform B field:

Applications: cyclotron, velocity selector, Hall effect

Sources of the Magnetic Field (Ch. 30, part 1)

- Calculating the B field due to currents (Biot-Savart)

Homework \#5: due 10/15 ,10 PM.
Optional reading quiz: due 10/12, 7 PM

Magnetic Fields and Forces: Recap

\square Magnetic Force: experienced by moving charges

$$
\vec{F}=q \vec{v} \times \vec{B} \quad \vec{F}=\int_{\text {(point charges) }} I d \vec{l} \times \vec{B}
$$

\square Magnetic Field B: sourced by moving charges direction: as indicated by north pole of compass

Units: 1 Tesla (T) = 1 N/(A m)

Field lines: closed loops! Outside magnet: N to S Inside magnet: \mathbf{S} to \mathbf{N}

Torque on Current Loop in Uniform B field

\square Force and torque on current loop:

$$
\vec{F}_{n e t}=0, \vec{\tau}_{n e t}=\vec{\mu} \times \vec{B}
$$

magnetic dipole moment: $\vec{\mu}=N I \vec{A}$
Loop rotates to minimize $U=-\vec{\mu} \cdot \vec{B}$

$$
\text { I.e., until } \vec{\mu} \| \vec{B}
$$

($N=\#$ of turns of loop, $A=a r e a$)

Charged Particle in Uniform B Field

$$
\begin{aligned}
& \vec{F}=q \vec{v} \times \vec{B}=m \vec{a}
\end{aligned}
$$

Force perpendicular to velocity: uniform circular motion Magnetic force does no work on charge: kinetic energy constant

Trajectory in Uniform B Field (2)

- Force:

$$
F=q v B
$$

- centripetal acc:

$$
a=\frac{v^{2}}{R}
$$

- Newton's 2nd Law:

$$
\begin{aligned}
& F=m a \Rightarrow q v B=m \frac{v^{2}}{R} \\
& \Rightarrow \quad R=\frac{m v}{q B}=\frac{p}{q B} \quad \begin{array}{l}
\text { (an important result, with useful } \\
\text { experimental consequences!) }
\end{array}
\end{aligned}
$$

"Cyclotron" frequency: $\quad \omega=\frac{v}{R}=\frac{q B}{m} \quad T=\frac{2 \pi}{\omega}=\frac{2 \pi m}{q B}$

Trajectory in Uniform B Field (3)

Question 1

The drawing shows the top view of two interconnected chambers. Each chamber has a unique magnetic field. A positively charged particle fired into chamber 1 follows the dashed path shown in the figure.

What is the direction of the magnetic field in chamber $1 ?$
a) $U p$
b) Down
c) Left
d) Right
e) Into page
f) Out of page

Question 2

What is the direction of the magnetic field in chamber 2?

a) Up
b) Down
c) Left
d) Right
e) Into page
f) Out of page

Which field is larger, B_{1} or B_{2} ?
a) $\boldsymbol{B}_{1}>\boldsymbol{B}_{2}$
b) $\boldsymbol{B}_{1}=\boldsymbol{B}_{2}$
c) $\boldsymbol{B}_{1}<\boldsymbol{B}_{2}$

Application: Cyclotron

First Modern Particle Accelerator

First Cyclotron (1934) Lawrence \& Livingston

Application: Velocity, Mass Selectors

\square Velocity and mass selector:

2004 Thomson - Brooks.COle

(b)

mass selected:

$\frac{m}{q}=\frac{r B_{0}}{v}=\frac{r B_{0}}{(E / B)}$

The Hall Effect (1)

Potential difference on current-carrying conductor in B field:

positive charges moving counterclockwise: upward force, upper plate at higher potential

negative charges moving clockwise: upward force Upper plate at lower potential

Equilibrium between electrostatic \& magnetic forces:

$$
F_{\text {up }}=q v_{d} B \quad F_{\text {down }}=q E_{\text {ind }}=q \frac{V_{\mathrm{H}}}{\mathrm{~W}} \quad V_{\mathrm{H}}=v_{\mathrm{d}} B w=\text { "Hall Voltage" }
$$

The Hall Effect (2)

5
$I=n q v_{d} A=n q v_{d} w t$

$$
V_{H}=v_{d} B w=\frac{I B}{n q t}
$$

Hall coefficient: $\quad R_{H} \equiv \frac{V_{H}}{I B}=\frac{1}{n q t}$
Hall effect: determine sign, density of charge carriers
(first evidence that electrons are charge carriers in most metals)

Magnetic Fields of charges, currents

Review: back to electrostatics:
Two Ways to calculate the electric field:

- Coulomb's Law

$$
d \vec{E}=k \frac{d q}{r^{2}} \hat{r}
$$

- Gauss' Law

$$
\int \vec{E} \cdot d \vec{A}=\frac{q_{i n}}{\varepsilon_{0}}
$$

"High symmetry"

Are there analogous equations for the Magnetic Field?

Calculation of Magnetic Fields (Currents)

Two Ways to calculate the magnetic field:

- Biot-Savart Law
("Brute force")

$$
d \vec{B}=\frac{\mu_{0} I}{4 \pi} \frac{d \vec{l} \times \hat{r}}{r^{2}}
$$

- Ampere's Law ("High symmetry")

$$
\oint \vec{B} \cdot d \vec{l}=\mu_{0} I
$$

-AMPERIAN LOOP
(Tuesday's lecture)

Biot-Savart Law...

B Field of Straight Wire, length L

\square (Text example 30.1) Show that B at point P is:

$$
B=\frac{\mu_{0} I}{4 \pi a}\left(\cos \theta_{1}-\cos \theta_{2}\right)
$$

\rightarrow When the length of the wire is infinity:

$$
B=\frac{\mu_{0} I}{2 \pi a}
$$

(a)

