Physics 202, Lecture 9

This week's Topics

- Basic DC circuits: Chapter 28
- Basic circuit components($\varepsilon, \mathrm{R}, \mathrm{C}, \ldots$)
- Single loop circuits
- Resistors in series and in parallel
- Kirchhoff's Rules: multi-loop circuits
- RC Circuits
- Homework \#4: problems from Ch. 26, 27, 28 due Monday, Oct 8 at 10 PM
- Reading quiz: for Thursday (optional, for extra credit)

Basic Circuit Components

Component	Symbol	Behavior in circuit
Ideal battery, emf	$+$	$\Delta \mathrm{V}=\mathrm{V}_{+}-\mathrm{V}_{\text {- }}=\boldsymbol{\varepsilon}$
Resistor	$\stackrel{R}{\text { M }}$	$\Delta V=-I R$
Realistic Battery	+	$\rightarrow \quad \stackrel{\varepsilon}{\underline{\prime}}$
(Ideal) wire	-	$\Delta \mathrm{V}=0 \quad(\rightarrow \mathrm{R}=0, \mathrm{C}=0)$
Capacitor	$\pm{ }^{+}$	$\Delta V=V_{-}-V_{+}=-q / C, d q / d t=1$
Inductor	\cdots	Later this semester
(Ideal) Switch	-5 $0-0{ }^{\text {a }}$	$\mathrm{C}=0, \mathrm{R}=0$ (on), $\mathrm{R}=\infty$ (off)
Transformer	Future Topics	
Diodes, Transistors,...		

emf: Electromotive "Force"

Battery as a source of Electromotive "force" (emf)
Chemical inside the battery maintains a charge distribution which provides a persistent potential difference \rightarrow emf
emf is a potential difference, it is not a force!

\square emf can also be produced by changes of magnetic flux. (later in the course)

* Direct Current (DC) Circuit: Circuit driven by $\varepsilon \sim$ constant

Devices: Summary

\square Batteries:
Voltage sources, sources of "emf" ε Purpose is to provide a constant potential difference between two points.

Non-ideal batteries: "internal resistance" r

OR

$$
V=\varepsilon-I r
$$

\square Resistors: resist electric current Ohm's Law: $\quad V=I R$

Capacitors: store charge (energy).

$$
Q=C V
$$

Example: Ch 28 \#1

Simple Circuit 1: Resistors In Series

Exercise: show

$$
R_{S}=R_{1}+R_{2}
$$

- $I_{1}=I_{2}=I$

$$
\begin{aligned}
\rightarrow & I \mathbf{I R}_{1}+\mathbf{I} \mathbf{R}_{2}=\Delta \mathbf{V} \\
& \mathbf{I}\left(\mathbf{R}_{1}+\mathbf{R}_{2}\right)=\Delta \mathbf{V}
\end{aligned}
$$

(b)
i.e.

\square In general: $\quad R_{S}=R_{1}+R_{2}+R_{3}+\ldots=\sum_{i} R_{i}$

Simple Circuit 2: Resistors In Parallel

\square Show

$I_{1}+I_{2}=I$
$\Delta V=I_{1} R_{1}=I_{2} R_{2}$
$\rightarrow \Delta V=I 1 /\left(1 / R_{1}+\mathbf{1} / \mathbf{R}_{2}\right)$
i.e.

(b)
\square In general

$$
R_{P}=\left(1 / R_{1}+1 / R_{2}+1 / R_{3}+\ldots\right)^{-1}
$$

Examples: Ch. 28 \#9

Power Distribution on Resistors in Series

Exercise: Equivalent Resistance of a Combined Parallel and Serial Circuit

- What is $R_{\text {eq }}$ for the combination shown?
$R_{1}=R_{2}=1 \Omega, R_{3}=2 \Omega, R_{4}=4 \Omega$.
8Ω
6Ω
$\Rightarrow 5 \Omega$

None of above

A Complicated Circuit

A complicated circuit :
-May contain more than one emf
-May not be simplified as
"in series" or "in parallel"

- May contain multi loops and junctions.
loops

Kirchhoff's Rules: Junction Rule
 $$
I_{1}=I_{2}+I_{3}
$$

\square Junction Rule (Charge conservation):
Sum of currents entering any junction equals the sum of currents leaving that junction.

(a)

$$
\Sigma l_{\text {in }}=\Sigma l_{\text {out }}
$$

\square In practice, the classifications of "in" and "out" determined by assigned direction for each current.
The assignment of current directions can be arbitrary.
(they may not be the same as actual directions)
" "in" : current with assigned direction towards junction

- "out" : current with assigned direction off junction

(Very) Quick Quiz: Junction Rule

. What is the junction rule for the current assignment shown?
$\mathrm{I}_{1}+\mathrm{I}_{2}=\mathrm{I}_{3}$
$\mathrm{I}_{1}=\mathrm{I}_{2}+\mathrm{I}_{3}$
$\mathrm{I}_{1}+\mathrm{I}_{3}=\mathrm{I}_{2}$

Quick Quiz: Junction Rule

- What is the junction rule for the current assignment shown?
$\mathbf{I}_{1}+\mathrm{I}_{2}=\mathrm{I}_{3}$
$\mathbf{I}_{1}+\mathbf{I}_{2}+\mathbf{I}_{3}=\mathbf{0}$
\leftarrow
Neither

While the actual currents can not all goes into a junction, the assigned currents can.

Kirchhoff's Rules: Loop Rule

$>$ The exact form of the potential drop is determined by the type of component and the assigned current direction. (See next slides)

