Physics 202, Lecture 7

Today's Topics

- About Exam 1
- Capacitance (Ch. 26-II)
- Review
- Energy storage in capacitors
- Dielectric materials, electric dipoles
- Dielectrics and Capacitance

Next lecture: More information about Exam 1. Current and Resistance (Ch. 27-I)

About the First Midterm Exam

The exam will be on Monday Oct 1 at 5:30-7:00pm.
Rooms: 2650 and 3650 Humanities

- McBurney students: contact me for special arrangements.
- If conflicts with exam time due to an evening course:
- Stay tuned for special arrangements.
- Be sure to have informed me via email by Friday at the latest.
- An $81 / 2 \times 11^{\prime \prime}$ double-sided formula sheet is allowed.
- Has to be self prepared: hand written or printed, but no Xerox.

Bring a calculator: but do not use programming functionality.

- Absolutely no communication functionality will be allowed.

F Format: word problems. More about this Thursday.

First Midterm Exam

Chapters Covered:- Chapter 23: Electric Fields
- Chapter 24: Gauss's Law
- Chapter 25: Electric Potential
- Chapter 26.1-26.3: Capacitance

Exceptions: you will not be responsible for the material covered in sections 24.5, 25.7, 25.8.
\square Office hours: I will be available in my office (5215 CH) on Friday afternoon, from 1-2:30, 3:30-5:30. TA's are also available in the helproom as always.Review sessions:

- Sunday, Sept 30, 1-3 PM, Rennebohm (this room)
- Saturday, Sept 29, 7 PM, place TBA

Capacitors: Summary

- Definition:

$$
C \equiv \frac{Q}{\Delta V}
$$

- Capacitance depends on geometry:

Parallel Plates
$C=\frac{\varepsilon_{o} A}{d}$

Cylindrical

$$
C=\frac{2 \pi \varepsilon_{o} L}{\ln \left(\frac{b}{a}\right)}
$$

Spherical
$C=4 \pi \varepsilon_{o} \frac{a b}{b-a}$

C has units of "Farads" or F ($1 \mathrm{~F}=1 \mathrm{C} / \mathrm{V}$) ε_{0} has units of F / m

Capacitors in Series and Parallel

\square Parallel:
Example: Ch. 26 \#27, 28 (board)

\square Series: $C_{s}=\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)^{-1}$

Energy of a Capacitor

- How much energy is stored in a charged capacitor?
- Calculate the work provided (usually by a battery) to charge a capacitor to $+/-Q$:

Incremental work $d W$ needed to add charge $d q$ to capacitor at voltage V :

$$
d W=V(q) \cdot d q=\left(\frac{q}{C}\right) \cdot d q
$$

- The total work W to charge to Q is then given by:

Capacitor Variables

- The total work to charge capacitor to Q equals the energy U stored in the capacitor:

$$
U=\frac{1}{C} \int_{0}^{Q} q d q=\frac{1}{2} \frac{Q^{2}}{C}
$$

- In terms of the voltage V :

$$
U=\frac{1}{2} C V^{2}
$$

You can do one of two things to a capacitor :

Example (I)

- Suppose the capacitor shown here is charged to Q. The battery is then disconnected.

- Now suppose the plates are pulled further apart to a final separation d_{1}.
- How do the quantities Q, C, E, V, U change?
- Q: remains the same.. no way for charge to leave.
- C: decreases.. capacitance depends on geometry
- \boldsymbol{E} : remains the same... depends only on charge density
- V : increases.. since $C \downarrow$, but Q remains same (or $d \uparrow$ but E the same)
- \boldsymbol{U} : increases.. add energy to system by separating
- How much do these quantities change?.. See board.

Answers:

$$
C_{1}=\frac{d}{d_{1}} C
$$

$$
V_{1}=\frac{d_{1}}{d} V
$$

$$
U_{1}=\frac{d_{1}}{d} U
$$

Example (II)

- Suppose the battery (V) is kept attached to the capacitor.
- Again pull the plates apart from d to d_{1}.

- Now what changes?
- \boldsymbol{C} : decreases (capacitance depends only on geometry)
- V : must stay the same - the battery forces it to be V
- Q: must decrease, $Q=C V$ charge flows off the plate
- \boldsymbol{E} : must decrease $\left(E=\frac{V}{D}, E=\frac{\sigma}{E_{0}}\right)$
- U: must decrease ($U=\frac{1}{2} C V^{2}$)
- How much do these quantities change?.. See board.

Answers:

$$
C_{1}=\frac{d}{d_{1}} C
$$

$$
E_{1}=\frac{d}{d_{1}} E
$$

$$
U_{1}=\frac{d}{d_{1}} U
$$

Where is the Energy stored?

- Claim: energy is stored in the electric field itself.
- Consider the example of a constant field generated by a parallel plate capacitor:

$$
\frac{\cdots \uparrow \uparrow \uparrow \uparrow T}{1+Q}+\frac{1}{2} \frac{Q^{2}}{C}=\frac{1}{2} \frac{Q^{2}}{\left(A \varepsilon_{0} / d\right)}
$$

- The electric field is given by:

$$
E=\frac{\sigma}{\varepsilon_{0}}=\frac{Q}{\varepsilon_{0} A} \quad \Rightarrow \quad U=\frac{1}{2} \varepsilon_{0} E^{2} A d
$$

- The energy density u in the field is given by:

$$
u=\frac{U}{\text { volume }}=\frac{U}{A d}=\frac{1}{2} \varepsilon_{0} E^{2}
$$

Units: $\frac{J}{m^{3}}$

Question

- A parallel plate capacitor is holding a charge q. The capacitor is not connected to a battery.
If plates are pulled apart, what happens to the stored energy?

Increases

Decreases

Stays the same

Arguments:

* volume increases, E same
* work done to it when
plates are being pulled apart

pull

Dielectrics

- Empirical observation:

Inserting a non-conducting material (dielectric) between the plates of a capacitor changes the VALUE of the capacitance.

- Definition:

The dielectric constant of a material is the ratio of the capacitance when filled with the dielectric to that without it:

$$
\kappa=\frac{C}{C_{0}}
$$

κ values are always > 1 (e.g., glass $=5.6$; water $=80$)
INCREASE the capacitance of a capacitor
They permit more energy to be stored on a given capacitor:

$$
U^{\prime}=\frac{C V^{2}}{2}=\frac{\kappa C_{0} V^{2}}{2}=\kappa U
$$

Dielectric Materials

Dielectrics are electric insulators:

- Charges are not freely movable, but can still have small displacements in an external electric field
- Atomic view: composed of permanent (or inducible) electric dipoles

Electric Dipole in External E Field

\square Electric dipole moment p.

Electric dipole moment in constant E field

Net Force $\quad \sum \vec{F}=0$	
Net Torque	$\vec{\tau}=\vec{p} \times \vec{E}$
Potential energy	$\mathrm{U}=-\vec{p} \bullet \vec{E}$

Quick Quiz 1

\square Which of the following configurations has the highest potential energy?

Points at 45°

Points towards the E field
$\rightarrow \quad$ Points against the E field

Points normal to the E field

Quick Quiz 2

\square An electric dipole moment initially points at 45° with respect to the x axis. When an external E field in the positive x direction is applied, what will happen?

No change

$\rightarrow \quad$ Points towards the E field

Points against the E field

Points normal to the E field

Dielectrics In External Field

\square Alignment of permanent dipoles in external field

Zero
© external field

Applying external E field

Equilibrium

Induced field by non-permanent dipoles

Note: induced field always opposite to the external field E_{0}

Insert Dielectrics In Between Conductor Plates

(a)

(b)

Parallel Plate Example Example: ch. 26 \#47 (board)

- Deposit a charge Q on parallel plates filled with vacuum (air)-capacitance C_{0}
- Disconnect from battery

- The potential difference is $V_{0}=Q / C_{0}$.

Now insert material with dielectric constant κ.
Charge Q remains constant
Capacitance increases $C=\kappa C_{0}$
Voltage decreases from V_{0} to:

$$
V=\frac{Q}{C}=\frac{Q}{\kappa C_{0}}=\frac{V}{\kappa}
$$

Electric field decreases also:

$$
E=\frac{V}{d}=\frac{V_{0}}{d \kappa}=\frac{E_{0}}{\kappa}
$$

Dielectric Constant For Various Materials

Approximate Dielectric Constants and Dielectric Strengths of Various Materials at Room Temperature		
Material	Dielectric Constant $\boldsymbol{\kappa}$	Dielectric Strength ${ }^{\text {a }}$ $\left(10^{6} \mathrm{~V} / \mathrm{m}\right)$ $\left(10^{6} \mathrm{~V} / \mathrm{m}\right)$
Air (dry)	1.00059	3
Bakelite	4.9	24
Fused quartz	3.78	8
Mylar	3.2	7
Neoprene rubber	6.7	12
Nylon	3.4	14
Paper	3.7	16
Paraffin-impregnated paper	3.5	11
Polystyrene	2.56	24
Polyvinyl chloride	3.4	40
Porcelain	6	12
Pyrex glass	5.6	14
Silicone oil	2.5	15
Strontium titanate	233	8
Teflon	2.1	60
Vacuum	1.00000	-
Water	80	-

[^0]laws in the materials.
© 2004 Thomson - Brooks/Cole

Use of Dielectric Material

\square Non-conducting dielectric material can be inserted in between conductor ends to increase capacitance.

92004 Thomson - Brooks/Cole

[^0]: The dielectric strength equals the maximum electric field that can exist in a dielectric without
 electrical breakdown. Note that these values depend strongly on the presence of impurities and

